
A Lightweight Secure Protocol for Wireless Sensor Networks
Bo Suna∗, Chung-Chih Lib, Kui Wuc and Yang Xiaod

aDept. of Computer Science, Lamar University,
Beaumont, TX, USA 77710, bsun@cs.lamar.edu

bDept. of Computer Science, Lamar University,
Beaumont, TX, USA 77710, licc@hal.lamar.edu

cDept. of Computer Science, University of Victoria
BC, Canada V8W 3P6, wkui@cs.uvic.ca

dDept. of Computer Science, The University of Memphis,
Memphis, TN, USA 38152, yangxiao@ieee.org

In this paper, based on a Linear Congruential Generator (LCG), we propose a new block cipher that is suitable for construct-
ing a lightweight secure protocol for resource-constrained wireless sensor networks. From the cryptanalysis point of view,
our building block is considered secure if the attacker cannot obtain the pseudo-random numbers generated by the LCG. The
Plumstead’s inference algorithm for a LCG with unknown parameters demonstrates that it is impossible to significantly enhance
the security of the system simply by increasing the size of the modulus. Therefore, we are motivated to embed the generated
pseudo-random numbers with sensor data messages in order to provide security. Specifically, the security of our proposed
cipher is achieved by adding random noise and random permutations to the original data messages. We also adopt the Hull
and Dobell’s algorithm to select proper parameters used in the LCG. The analysis of our cipher indicates that it can satisfy the
security requirements of wireless sensor networks. We further demonstrate that secure protocols based on our proposed cipher
satisfy the baseline security requirements: data confidentiality, authenticity, and integrity with low overhead. Performance
analysis demonstrates that our proposed block cipher is more lightweight than RC5, a commonly used cipher in wireless sensor
networks, in terms of the number of basic operations.

Keywords - Wireless Sensor Networks, Linear Con-
gruential Generator, Security

1. Introduction

Wireless Sensor Networks (WSNs) are usually
built with a large number of inexpensive, small, and
battery-powered devices. They have been used for
a wide variety of applications such as environment
monitoring, health monitoring, military sensing and
tracking, etc [1]. In hostile and un-trusted environ-
ments such as battlefield surveillance, an adversary
can eavesdrop on traffic, inject new messages, and re-
play old messages. Therefore, it is necessary to in-
corporate appropriate secure mechanisms into wire-
less sensor networks. However, given the stringent
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constraints on processing power, memory, bandwidth,
and energy consumption, it is very difficult to design
suitable secure mechanisms for wireless sensor net-
works. For example, Mica2 Motes [2] consist of an
8 MHz 8-bit Atmel ATMEGA128L CPU with only
4KB of RAM space for data, 128KB of program
memory, and 512KB flash memory. This leaves very
limited resources for the necessary security compo-
nents in WSNs.

The constraints posed by the sensor hardware make
it impossible to deploy most of the traditional se-
curity primitives and protocols. For example, it
is too expensive to apply asymmetric cryptography
to wireless sensor networks, such as the RSA [24]
and Diffie-Hellman algorithm [25], because they re-
quire expensive computations and long messages that
could easily exhaust the sensor’s resources. Sym-
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metric cryptography can be used in wireless sen-
sor networks. Some popular symmetric encryption
and hashing function schemes include RC5 [21],
MD5 [26], SHA1 [27], Skipjack [28], and many ex-
isting security protocols for WSNs are based on these
schemes. For example, SPINS [12] used RC5 as the
block cipher. TinySec [19] used Skipjack as the de-
fault block cipher. However, a close look at the se-
curity of WSNs demonstrates that most of them only
focus on the existing encryption primitives in order
to construct the secure protocols. Therefore, the per-
formance of the proposed security protocols depends
heavily on the encryption primitives themselves.

In this paper, we take a different step to tackle
the security problems for WSNs. Instead of focusing
on the potential performance improvement of secu-
rity protocols with existing block ciphers, we aim at
proposing a more lightweight block cipher that is suit-
able for wireless sensor networks. We are motivated
by the fact that a suitable lightweight block cipher can
significantly reduce the overhead of the security pro-
tocols built on it. Therefore the overall performance
can be improved dramatically.

Specifically, we propose a lightweight block ci-
pher that is based on a Linear Congruential Genera-
tor (LCG) [31]. In theory, cryptosystems based on a
pseudo-randomnumber generator (PRNG) (for exam-
ple, a LCG) are not suggested because they are pre-
dictable [5]. However, after properly arranging the
use of numbers generated by a LCG, we can not only
achieve the desirable security properties but also en-
joy the high efficiency provided by a LCG. Utilizing
the simplest form of a LCG and based on the experi-
ment from the Plumstead’s algorithm [7], we demon-
strate that it is impossible to significantly enhance the
security of the system simply by increasing the size
of the modulus. By adding random noise generated
by a LCG and random permutations to sensor data
messages, we demonstrate that our proposed cipher
is secure enough for WSNs. We also adopt the Hull
and Dobell’s Theorem [38] to select the proper para-
meters of the LCG. In this way, it can also reduce the
cost of security provision. We compare the number
of basic operations of our proposed cipher with that
of RC5, which is one of the most commonly used al-
gorithms in security protocols for wireless sensor net-
works [12]. Analytical results demonstrate that our
proposed block cipher is more lightweight than RC5.

1.1. Related Work
There are two aspects of related work: security

in wireless sensor networks and security analysis of
LCGs.

Many research efforts have been devoted to secu-
rity is wireless sensor networks. Perrig at al. [12] pro-
vided a suite of security building blocks that are op-
timized for resource constrained wireless sensor net-
works - SNEP and µTESLA. Liu. et. al [29] proposed
an efficient distribution of key chain commitment for
µTESLA. Hu et. al [30] studied the secure aggrega-
tion problem if one node is compromised. Park et al.
[23] proposed LiSP - an efficient lightweight protocol
that makes a trade-off between security and resource
consumption. Karlof et al. [19] presented the fully-
implemented link layer security architecture for wire-
less sensor networks.

There is also much work devoted to the key dis-
tribution and management in wireless sensor net-
works [12] - [17]. Our work depends on the key pre-
distribution protocol to set up the initial shared secret
between sensor nodes.

That all sequences generated by the LCG are pre-
dictable was first argued by Knuth [5]. Boyar [7] gave
a rather complete treatment on the predictability of
some of the widely used LCGs. Krawczyk [8] gave
an inference algorithm that can predict any sequence
generated by the LCG in its most general form, which
settled a final theoretical viewpoint to the predictabil-
ity of LCG. In [9], Ritter strongly warned that any
attempt to use LCGs for cryptographical purposes is
dangerous unless the sequence can be isolated from
another generator. Our work is motivated by this fact
and uses the transmitted information to protect the se-
quence of random numbers. We have also presented a
LCG-based encryption protocol for email encryptions
[33].

The rest of the paper is organized as follows. Sec-
tion 2 presents the goals of our proposed security pro-
tocol. In Section 3, we introduce the keying mecha-
nisms in developing the lightweight security protocol
for wireless sensor networks. In Section 4, we present
our LCG-based security protocol in detail. In Sec-
tion 5, performance of the proposed block cipher is
presented and compared with RC5. Finally, in Sec-
tion 6, we conclude the paper and point out future
work.
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2. Security Goals

We focus on the following basic security goals:

• Confidentiality: Many applications of WSNs,
such as military monitoring, require secured
sensor readings/data so that they cannot be dis-
closed to attackers. This is also one of the
goals for our security protocol. Confidential-
ity is typically achieved through encryption.
Another stronger requirement is semantic se-
curity, which ensures that an adversary has no
information about the plaintext, even if it sees
multiple encryptions of the same plaintext [32].
A basic technique to achieve semantic security
is to use randomization. We will show that our
protocol also achieves semantic security later.

• Integrity: It makes sure that if an adversary
modifies a data message from an authentic
sender, the receiver should be able to detect this
tampering.

• Authenticity: It ensures that data messages
come from the intended sender. By achieving
authenticity, we can prevent some third party
from injecting falsified messages into the net-
work.

3. Assumption

We assume that wireless sensor nodes are con-
strained in resources. We assume that every sensor
node has space to store several hundreds of bytes of
keying information. We do not put any assumption on
the time synchronization of sensor nodes.

We assume that an adversary can eavesdrop on all
traffic. Therefore, the adversary can perform crypt-
analysis to deduce the secret.

Our protocol assumes the existence of a key man-
agement scheme and can work well with any of key
management protocols. The easiest key management
scheme is to use a network-wide shared key among all
the nodes. Any communication can be encrypted and
authenticated using this key. The advantage is its sim-
plicity. However, the compromise of any single node
can paralyze the whole network because the adversary
can eavesdrop on traffic and inject falsified messages
anywhere in the network.

A more robust approach is for groups of neighbor-
ing nodes to share a key. That is, a key is locally
shared by a node and its neighbors. In this keying
mechanism, a compromised node can only decrypt
the messages from nodes in its own group. It cannot
decrypt messages from and inject falsified messages
into other groups.

The most robust but the most complicated approach
is for WSN nodes to set up pairwise keys on the fly.
It can effectively defend against node capture attacks.
However, how to set up pairwise keys on the fly is a
non-trivial task.

We assume that there exists a key management sub-
system that makes it possible for wireless sensor net-
work nodes to negotiate the key setup and bootstrap
the corresponding trust relationship. This is a reason-
able assumption given the fact that research regarding
the group key and pairwise key setup has been carried
out extensively [12] - [17]. They could be utilized
to provide a security service to our protocol. Based
on the key pre-distribution protocol, each sensor node
could share a secret key with other nodes when nec-
essary. As we will demonstrate later, the key in our
context is the set of parameters used by a LCG.

4. LCG-based Security Protocols

To provide a hop-by-hop guarantee on confiden-
tiality, integrity, and authenticity of data messages,
the processing overhead incurred by encryption prim-
itives is the main concern. At the same time, the in-
troduction of security should not incur expensive en-
ergy consumption. This is especially important given
the extremely limited processing capability of sen-
sor hardware. A large overhead will inevitably in-
crease the processing delay and consume more en-
ergy. Therefore, it is necessary to design a fast and
secure building block that can be used in wireless sen-
sor networks.

4.1. Why selecting LCG
Almost every cryptosystem needs a source of ran-

dom numbers either in constructing keys for encryp-
tion algorithms or in generating enough randomness
for scrambling the sensitive information. While a rig-
orous mathematical definition for true randomness is
still an open research topic, many Pseudo-Random
Number Generators (PNRG) have been introduced for
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practical purposes.
It is easy for us to think of linear algorithms when

efficiency and simplicity come to our top priorities.
However, a close examination of some widely used
linear PRNGs listed in [3] shows that they are all
proven to be cryptographically insecure. Let’s take
Linear Congruential Generators (LCG) as an exam-
ple. Most commercial LCGs do not intend to be used
for cryptographic purposes [3] [4]. A series of investi-
gations of LCGs in late 80’s and early 90’s have been
done and raised a substantial doubt about using LCGs
in any cryptosystem. In conclusion, LCGs are crypto-
graphically insecure in the sense that an attacker can
practically recover the entire sequence with a limited
observation on the sequence.

However, this is based on the assumption that an
enough amount of sequences generated by a fixed
PRNG is known to the attacker. If we can use the in-
formation itself to protect the random sequences, we
can use the linear PRNGs as an efficient mechanism
to protect the data transmission in wireless sensor net-
works. Motivated by this, we pick up the Linear Con-
gruential Generator (LCG) in its simplest form to pro-
duce pseudo-random numbers. The reason that we
select the LCG is because it is the simplest, most effi-
cient, and a well-studied pseudo-randomnumber gen-
erator.

4.2. Linear Congruential Generators
The simplest form of a Linear Congruential Gener-

ator (LCG) uses the following equation:

Xn+1 = aXn + b mod m, n = 0, 1, 2, . . . (1)

where a is the multiplier, b is the increment, and
m is the modulus. Xn and Xn+1 are the nth and
(n + 1)st numbers, respectively, in the sequence gen-
erated by the LCG. X0 is called the seed of the LCG.
X0, a, b, and m are the parameters of the LCG. The
statistical properties of the pseudo-random numbers
generated by a LCG depend on the selection of its pa-
rameter [5].

4.2.1. Predictability of LCGs
In order to properly arrange the use of pseudo-

random numbers generated by a LCG, we need exper-
imental results to decide how many numbers are actu-
ally needed to successfully infer the entire sequence.
Because of this, we implement the Plumstead’s infer-

ence algorithm [7] against the LCG in its easiest form
as shown in Equation (1).

The Plumstead’s algorithm [7] is intended to dis-
cover the hidden parameters of an unknown LCG by
observing its outputs as shown in Fig 1. We im-
plement the algorithm to observe how many pseudo-
random numbers are actually needed for successfully
recovering the parameters of an unknown LCG, so we
can adequately adjust our cipher to meet the security
requirements.

LCG
a, b, m, X0

... X3, X2, X1
What is

a, b, m, X0?

Figure 1. Plumstead’s Algorithm.

4.2.2. Plumstead’s Algorithm
Assume that Equation (1) is a LCG with the

fixed parameters a, b, m, and X0, where m >
max(a, b, X0). The algorithm will find a congruence
Xn+1 = âXn + b̂ mod m, possibly with a differ-
ent multiplier and increment but generating the same
sequence as the fixed congruence does. The inference
consists of two stages as follows.

Let Yi = Xi+1 −Xi.

• Stage I: In this stage, we find â and b̂ as fol-
lows:

1. Find the least t such that d =
gcd(Y0, Y1, . . . Yt) and d divides Yt+1.

2. For each i with 0 ≤ i ≤ t, find ui such that

t∑

i=0

uiYi = d.

3. Set â = 1
d

∑t
i=0 uiYi+1, and b̂ = X1− âX0.

This stage will give Xi+1 = âXi + b̂ mod m
for all i ≥ 0.
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• Stage II: In this stage, we begin predicting
Xi+1 and, if necessary, modifying m. When a
prediction Xi is made, the actual value will be
available to the inference algorithm. Initially,
we set i = 0 and m = ∞ and assume that X0

and X1 are available (we can reuse the numbers
used in the previous stage). Repeat the follow-
ing steps:

1. Set i = i + 1 and predict

Xi+1 = âXi + b̂ mod m.

2. If Xi+1 is incorrect, m = gcd(m, âYi−1 −
Yi).

Xi can be inferred in the limit. Please refer to
[7] for a detailed proof.

4.2.3. Analysis of Plumstead’s Algorithm
It is clear that every step in both stages is

polynomial-time computable in terms of the size of
m. Plumstead proves that in Stage I, t is bounded by
t ≤ �log2 m�. The number of incorrect predictions
made in Stage II is bounded by 2 + log2 m. There-
fore, the algorithm is optimal with a sample complex-
ity O(log2 m) in the worst case.

4.2.4. Empirical Results of Plumstead’s Algo-
rithm

We carried our experiments to measure the impact
of m on the security performance of the LCG. We
tested the module, m, from 1 byte and double its
size up to 32 bytes. For m ≥ 2 bytes, we used
the Miller-Rabin Test [10], a very efficient random-
ized algorithm for primality tests, to select and de-
termine prime numbers with an error rate less than
(1
2 )�log2 m�. Given m, we select 1000 sets of different

parameters (a, b, m, and X0). For each set of para-
meters, we generated the sequence of pseudo-random
numbers X1, X2, . . .. We ran the Plumstead’s algo-
rithm to decide how many Xi are needed to recover
the set of parameters (a, b, m, and X0).

The results of our experiments are shown in Ta-
ble 1, in which µ is the average number of samples
needed to successfully infer the pseudo-random num-
ber sequence while δ is the standard deviation. The
theoretical analysis of the Plumstead’s algorithm is
based on the worst case. In reality, however, the worst
case rarely occurs. Experimental results show that the

Plumstead’s algorithm is much more powerful than
what the theoretical analysis has suggested. We ob-
serve that the number of samples needed in average
is far fewer than that of the worst case. Also, Table 1
contains the best case (min) and the worst case (max)
for each size. The values of δ in Table 1 indicate that
the worse case occurs rarely.

Based on the results illustrated in Table 1, we can
see that the size of m does not prolong the inference
process significantly. This is because, from the theo-
retical point of view, the size of m does not affect the
number of internal states [4]. Therefore, for a LCG,
instead of increasing the size of m, we need to hide
the numbers generated. Also, from the results illus-
trated in Table 1, we can see that if we can find a way
to prevent the adversary from retrieving five or more
consecutive numbers from the sequence, our cipher
based on the LCG will be secure. Our design follows
the above principle by using the transmitted informa-
tion to protect the sequence of random numbers and
by using a re-keying mechanism.

4.3. Key Selection
Based on the results illustrated in Table 1, the mod-

uli that we choose is a 16-byte prime. This could also
facilitate the selection of suitable X0, a, b, and m that
satisfy the security requirements, as we show later. By
the Prime Number Theorem that the number of pos-
itive prime less than n is asymptotic to n/ lnn, the
density of 16 byte primes is about 1

ln 2128 = 0.0127.
Here, ln is the natural logarithm whose base is e.
Therefore, on average we can successfully pick up a
prime within about 100 random selections. Then, we
randomly assign numbers less than m to X0 without
further imposing any restriction except for some triv-
ial values such as 0 or 2k. There is no concern about
the size of the cycle in the sequence generated, since a
16-byte prime as the modulus is very likely to gener-
ate unrepeated numbers within the length of a regular
data message, which is usually short in WSNs.

In our scheme, we only keep X0 as the secret
shared between two nodes. a, b, and m can be made
open. They could be treated as the WSN parameters.
Careful selections of a, b, and m are needed, though,
in order to achieve the maximum security using the
LCG. In this respect, we apply Hull and Dobell’s The-
orem [38] as follows.
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Table 1
Results of Plumstead’s Algorithm

|m| Bytes µ δ min max

1 5.438 0.939 5 12
2 5.617 1.221 5 17
4 5.554 1.082 5 15
8 5.586 1.114 5 16
16 5.802 1.764 5 31
32 6.105 3.149 5 57

Hull and Dobell’s Theorem:

The linear congruential sequence X0, X1, X2, . . .
generated by

Xn+1 = aXn + b mod m (2)

has a period (the number of integers before the se-
quence repeats) of length m if the following condi-
tions hold:

1. gcd(c, m) = 1: The only positive integer that
(exactly) divides both m and c is 1. That is, c is
relatively prime to m.

2. p/(a − 1), for every prime p such that p/m:
If p is a prime number that divides m, then p
divides (a− 1).

3. If m is divisible by 4, then (a − 1) is divisible
by 4.

Since the results of Plumstead’s algorithm suggest
that the LCG can be broken almost in a constant num-
ber of observed random numbers, our system is not
more secure if we keep all parameters a, b, m, and X0

in secret. In this respect, we make them public except
X0. Our goal is to hide all random numbers from the
adversary and set up a system that chosen-plaintext
attack cannot be conducted. The security of our sys-
tem then does not rely on the cryptographic strength
of the LCG (which is extremely weak). Instead, we
rely on the LCG’s statistical randomness, i.e., uni-
formality and period of repetition. Besides the LCG,
such statistical properties of any PRNG can be easily
tested. Based on Hull and Dobells Theorem, the LCG
can reach such maximal statistical randomness under
the conditions listed above, which are rather easy to

achieve. When the period of the LCG reaches its max-
imum value, the chance to guess a right X0 is 1/m.
Also, in practice, the chance that two nodes have their
sequence overlapped is slim when m is sufficiently
large. In our case, m has at least 128 bits.

Since X0 is the only shared secret, key pre-
distribution is relatively easier. For example, the
Blom key predistribution scheme [39] can be used to
allow any pair of nodes to compute one secret shared
key (single key space) (It is worth noting that, based
on the Blom key predistribution scheme, Du et al.
[14] proposed a pairwise key predistribution scheme
using multiple key spaces). In this paper, we focus
on the discussion of a LCG-based scheme. X0 can
be any number in Zm = 0, 1, . . . , m− 1. If the en-
vironment is detected more hostile, our idea is still
workable but a more complicate yet more crypto-
graphically secure PRNG should be used to replace
the LCG. Therefore, in this respect, the system is not
more secure if we keep a, b, and m the shared secret.

In order to speed up our modulus operation and re-
duce the computing overhead for each sensor node,
we make the following requirement for the multiplier
a and the modulus m:

263 < a < 264 and 2127 < m < 2128.

We will discuss the benefits we can obtain by set-
ting this extra requirement in Section 5. It is worth
noting that because a, b, and m are open, these extra
requirements will not cause extra computation over-
head to each sensor node.

4.4. Basic Hop by Hop Message Transmission
In this section, we introduce our secure data trans-

mission scheme. Our scheme makes use of an ef-
ficient and lightweight LCG-based approach. Com-
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pared to traditional approaches, our approach is more
lightweight and more suitable for wireless sensor net-
works. We remedy the theoretical fault of the LCG
and make our block cipher satisfy the security require-
ments in WSNs.

In the following, we use secure data aggregation
[1] as an example to illustrate the operations of our
LCG-based security protocol. The reason we choose
data aggregation as an example is because it has been
widely used to reduce the amount of traffic to the
sink node. Nevertheless, our proposed security mech-
anism is general enough and is not limited to data ag-
gregation only.

We use the following notation to describe our secu-
rity protocol and cryptographic operations:

A, B, C...: Sensor nodes
E(P, K): Encryption of plaintext message P using

key K
P1|P2: Concatenation of message P1 and P2

MAC(P, K): Message Authentication Code (MAC)
of message P using key K

X0: Seed of the LCG
a, b, m: Parameters of the LCG. They are open and

could be treated as the parameters of the WSNs.
KAB: Shared secrets between node A and B. It is

X0 of the LCG.
The overall scheme is illustrated in Fig. 2.
In Fig. 2, sensor nodes, such as nodes A, B, C,

and D have monitored some events and transferred
the readings to their immediate aggregator, node H .
Each sensor node appends a MAC to the plaintext
message P and uses their shared secret keys with H
to encrypt the whole message. Note that KAH , KBH ,
KCH , and KDH can be decided based on different
keying mechanisms, as discussed in Section 3. Af-
ter H receives the readings, it uses the corresponding
secret to decrypt and authenticate the received mes-
sages. It then computes and sends out the aggregated
result. This time, node H appends a new MAC to the
aggregated result and uses its shared secrets with its
immediate aggregator, node J , to encrypt the whole
message.

This transmission scheme is rather standard. We
can see, one of the most critical parts in this process
is how to efficiently design the encryption E(P, K)
and compute the MAC MAC(P, K).

Results illustrated in Table 1 indicate that the Plum-
stead’s algorithm can correctly predict the entire se-

quence with a few numbers in the sequence. In
most cases, five or six numbers are enough. This
will prevent a direct embedding of the numbers in
the data message, because otherwise some classical
cryptanalysis such as the dictionary-attack [31] can
be used to provide enough information for inference
if the adversary possesses enough amount of possi-
ble messages in his dictionary. For example, in a
typical application of forest fire detection, the data
message is used to transmit the temperature change
from that of last moment. In this case, if the encod-
ing format is known to the adversary, the elements
in his dictionary could be all possible changes of the
temperature. Since all these possible changes could
repeatedly appear in the data messages, the attacker
could try to match them in the dictionary and recover
enough amount of pseudo-random numbers to infer
the parameters of the LCG that generate them. This
problem is considered in Step 3 of our encryption
scheme illustrated in the following.

In Fig. 2, the actual message format is
E(P |MAC(P, K), K). One alternative is
E(P, K)|MAC(P, K). We will compare them in
Section 4.4.2.

4.4.1. Message Encryption
The goal of encryption is to prevent an attacker

from recovering all the random numbers (i.e., X i)
generated by the LCG, and thus keep the plaintext
message secure. We assume that the message to be
encrypted is delimited into segments of 1 byte as we
find that it is typical in the context of wireless sensor
networks.

The encryption depends on the underlying block ci-
pher. One general requirement is that the block cipher
should be secure and lightweight for wireless sensor
networks. It cannot involve too many complex mul-
tiplications and modulo operations because they are
too expensive. The size of the block cipher should
not be too large either. Otherwise, given the usually
small size of the data messages in WSNs, the message
padding will introduce a large overhead.

Our proposed block cipher is 16 bytes in size. For
each block cipher, one 16-byte random number X 1

is needed. It is used for the first stage of encryption
(Stage I). The result of Stage I (combine two 8-byte
numbers into one 16-byte number) is used for permu-
tations and further encryption (Stage II). Specifically,
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DB E

HA

F

G

I

Base Station

J

C

E(PA | MAC(PA, KAH), KAH)

E(PB | MAC(PB, KBH), KBH)

E(AggrH | MAC(AggrH, KHJ), KHJ)

E(PB | MAC(PB, KCH), KCH)

E(PB | MAC(PB, KDH), KDH)

Figure 2. Hop By Hop Security Protocol.

for a 16-byte packet, once the parameters (a, b, and
m) and the seed (X0) of our LCG are decided, the
LCG generates X1 and the block cipher embeds each
byte of the random number in the packet. We also
introduce the noise permutation to further scramble
results. The general strategy of using our proposed
block cipher to encrypt a 16 byte packet is illustrated
in Fig. 3:

• Step 1 - Random Number Generation: We
use the LCG to generate the random number.
Given a 16 byte block cipher, one 16 byte ran-
dom number, X1, is needed.

• Step 2 - Stage I: Suppose that p1 and p2 are
the plaintext message to be encrypted using this
block cipher. Each pi is 8 bytes. We embed
the pseudo-random number X1 into the plain-
text message in the following way.

For example, let

Wireless sensor

be the message to be encrypted. So p1 =
Wireless, and p2 = sensor . Note that there
is a space at each side of p2. There are 16 bytes
in the message, and they can be encrypted using
one block cipher.

The first three characters of p1 are W = 87,
i = 105, and r = 114. The embedding oper-
ations are simply the addition modulo 256. A
more complicate operation is not necessary in
this step. If

X1 = 10 5A FB 11 FC BB 00 11 22 33 44 55
66 77 88 99h

The values of the first three bytes are 10h =
16, 5Ah = 90, and FBh = 251. Therefore,
the values of the first three ciphertext characters
encrypted are:

87 + 16 mod 256 = 103

105 + 90 mod 256 = 195

114 + 251 mod 256 = 109

As illustrated in Fig. 3, C1, and C2 are the
scrambled text after X1 is embedded. Each Ci

is also 8 bytes.

• Step 3 - Permutation: X1 is broken into 16
1 byte random numbers (Because X1 is a 16-
byte random number). We use B0, B1, . . . , B15

to denote them respectively. We intro-
duce a permutation function Π over Z16 =
{0, 1, 2, . . . , 15}. Let Π = π0π1π2 . . . π15 be
constructed as follows:
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X1

p1 p2

8 Byte

C1 C2 Permutation Function

plaintext

ciphertext

Step 1: Random Number X1 Generation

Step 2

Step 3

Step 4

LCG as a Noise 
Generator

Seed X0

a, b, m

B
0

B
1

B
15

X1

Block Cipher
'
1C '

2C

Figure 3. Message Encryption of a 16 byte Packet.

1. π0 = B0 mod 16;

2. πi = (n mod 16), for i = 1 . . . 15 with
n is the smallest integer such that n ≥ Bi

and πi � {π0, π1, . . . , πi−1}.

• Step 4 - Stage II: After we obtain Π, we ap-
ply Π to C1C2 obtained in Step 2 in a standard
manner, i.e., the ith byte of Π(C1C2) is the πth

i

byte of C1C2. Presented by 8 byte segments,
let Π(C1C2) = C′

1C
′
2, which are our final en-

crypted message.

Decryption is straightforward. Through the key
distribution protocol, the receiver node has obtained
the same parameter (a, b, m) and the seed (X0) of the
LCG. Therefore, the receiver node could generate the
same X1 that the sender generates. Based on X1, the
receiver can recover the same permutation function.

It can then recover C1 and C2. Finally, the receiver
can obtain p1 and p2.

4.4.2. Security Analysis
We use the basic goals discussed in Section 2 - con-

fidentiality, authenticity, integrity to analyze our pro-
posed security protocol.

• Confidentiality:

According to the construction of the permuta-
tion function in Step 3, the mapping from the
random bytes Bi to Π is many-to-one. Un-
der the chosen-plaintext attack, the adversary
may successfully obtain a permutation func-
tion. However, one permutation function cor-
responds to

25616

16!
≈ 2128

244
≈ 284
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many values for one 16 bytes pseudo-random
number. That is, the same permutation function
may be constructed based on 284 many differ-
ent pseudo-random numbers (i.e., B i). There-
fore, it is not feasible to exhaustively search the
possible values of the 16 byte pseudo-random
numbers.

We only use a half of each byte (16 = 24) in Bi

to construct our permutation function. It fol-
lows that the revealing of the permutation func-
tion cannot recover the value of B i. Even from
the cryptographic point of view, we consider re-
vealing some random bits (a half of bits in B i)
a deficiency in a cryptosystem, we have the fol-
lowing analysis. The probability that the values
in Bi do not introduce collisions is very low.
More precisely, according to the birthday [31]
attack, when n = 16 and

k ≈
√

2n ln 0.5−1 − 1 ≈ 3.7 (3)

The probability of Bk mod 16 ∈
{π0, π1, . . . , πk−1} (the probability of colli-
sion) is at least 0.5. Based on Equation 3,
starting from π3, the value of πi is not likely
to be the value of Bi mod 16. As i becomes
larger, the chance of collisions becomes larger
and the chance that the attacker obtains the
right value for Bi becomes smaller.

• Authenticity and Integrity:

Authenticity and Integrity are the two basic re-
quirements of any security systems. A MAC
mechanism is used here to provide Authentic-
ity and Integrity together.

We use a Cipher Block Chaining (CBC) MAC
to provide authentication and integrity. CBC-
MAC is efficient and effective. It has proven
that the CBC-MAC construction is secure if the
underlying block cipher is secure [22].

In [19], a choice of a 4 byte MAC is used. This
is because in certain applications, it is difficult
for the attacker to brute force the key in an off-
line manner. Therefore, given a 4 byte MAC,
an adversary has a 1 in 231 chance in blindly
forging a valid MAC for a particular message.

Because the adversaries cannot determine off-
line if a forgery will be successful or not, the
adversary can only test the validity of an at-
tempted forgery by sending it to an authorized
receiver. Given a 19.2kbs channel in WSNs,
one can only send 40 forgery attempts per sec-
ond. Therefore 231 packets would take about
20 months, which is not realistic in WSNs. Fol-
lowing the motivation in [19], we also use a 4
byte MAC in our protocol.

The CBC-MAC using our proposed block ci-
pher scheme is illustrated in Fig. 4. Here
each pi is 8 bytes and X1 is 16 bytes. The
output of the previous block cipher C ′

1C
′
2 (16

bytes) is used as the input for the next block
cipher (i.e., X1). This process is standard. The
final output C ′

2i+1C
′
2i+2 is 16 bytes. We use

(First 4 Bytes of C′
2i+1)

⊕
(Second 4 Bytes

of C′
2i+1)

⊕
(First 4 Bytes of C′

2i+2)
⊕

(Second 4 Bytes of C′
2i+2) to convert it to a

4-byte MAC,

As illustrated in Fig. 2, the final format of our
transmitted message is E(P |MAC(P, K), K),
instead of E(P, K)|MAC(P, K). The encryp-
tion computation in E(P, K)|MAC(P, K) in-
volves less operations because its encryption
only operates on P , instead of P |MAC(P, K).
However, the MAC code is short in wire-
less sensor networks. What’s more, the
MAC function is usually weaker than that of
traditional wired networks. Therefore, we
choose E(P |MAC(P, K), K) as our mes-
sage format in transit. The encryption of
E(P |MAC(P, K), K) can provide one layer
of protection for the MAC.

An adversary can launch the replay attack by
eavesdropping on legitimate messages sent be-
tween two nodes and then replays it at some
later time. A common approach is to include
a monotonically increasing counter shared by
two nodes with the transmitted message. The
use of the counter could also help to achieve se-
mantic security. However, a counter exchange
protocol is necessary to tackle the counter syn-
chronization problem. A replay table is also
needed to keep the last value from every sender.
Some research efforts [12][19] have discussed
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Figure 4. Integrity and Authenticity.

this aspect before, we do not cover its details
here.

Another approach to achieve semantic security
in our context is an efficient rekeying mecha-
nism. In Fig. 3, C ′

1 and C ′
2 can be assigned

as the new seed (X0). That is, after the trans-
mission of the current data message, X0 is
changed to C ′

1C
′
2 at both the sender and the

receiver. Therefore, new keys will be gener-
ated for the encryption of the next data mes-
sage at the sender and receiver sides. Note
that no message overhead is involved in this
process. In doing so, the same plaintext mes-
sage can be encrypted using different keys. In
this way, semantic security can be achieved.
This could also help to prevent the replay at-
tack because bogus messages will be discarded
if the computed MAC and the received MAC
do not match.

Nevertheless, if an environment suffers from
a high rate of message lost and collision, key
synchronization will become a serious prob-
lem. In such an environment, we can reduce
the frequency of rekeying operations to avoid
the potential huge number of key synchroniza-
tion operations. To prevent potential Denial-
Of-Service (DoS) attacks, that is, an adversary
can keep sending bogus messages to trigger the
nodes into performing key synchronization, the

nodes can use the similar method as in [12] by
sending the keys with each encrypted messages
they send.

There is also one trade-off between the com-
munication overhead and the key synchroniza-
tion: We can add 1 Byte overhead to the data
packet. This byte is used as the counter and
it is transmitted with every data packet. Given
a harsh environment, the packet delivery ra-
tio could be very low. However, it still has a
very low probability that consecutive 256 pack-
ets are lost. Therefore, when the receiver re-
ceives the counter, it can compare it with its
own stored counter. The difference between the
received counter and the stored counter could
help the receiver to decide what Xi is used for
the current data packet. In this way, a key syn-
chronization could be achieved.

In this way, we can simply delete the CRC of the
original message.

4.4.3. Discussion
Our cipher is designed based on the following be-

lief: while the pseudo-random numbers are generated
to protect the message, the entropy of the message it-
self can in turn protect the pseudo-random numbers.
Thus, if the message sent out from the sensor is almost
flat, i.e., with very low entropy, our encryption in Step
2 alone is insecure since too many random bits can be
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recovered and, consequently, the size of the possible
key space will be largely reduced. For this reason, we
introduce the permutation in our cipher in Steps 3 and
4 to guarantee that even if our cipher is applied to a
low entropy environment, the security of our cipher
will not be significantly compromised.

Moreover, the encryption in Step 2 alone cannot
resist known-plaintext attack in case the message in a
sequence of transmitted packages is known to the ad-
versary. To fix this problem, the permutation function
takes on in Step 3, in which the random numbers gen-
erated by the LCG play an extra role in altering the
original order of the content of the message.

So far, we are not aware of any known-plaintext at-
tack against our proposed block cipher. To our knowl-
edge, even a plaintext-ciphertext pair is given, there
is no easy way to separate the two factors, noise and
permutations, involved in the ciphertext. Likewise, a
direct ciphertext analysis does not seem possible.

For the chosen-plaintext attack, as we mentioned
earlier, encrypting two packets and comparing their
ciphertexts may reveal about 8 to 12 random bits in a
128-bit random number. This does not provide suf-
ficient information for the adversary to conduct an
effective attack in the context of WSNs. Also, our
scheme has a potential to integrate an efficient rekey-
ing scheme - Xi could be changed for each transmis-
sion. In this kind of situation, chosen-plaintext attack
does not apply.

We can see the size of our block cipher is 16 bytes.
For wireless sensor networks, most data messages are
usually small. So for a data packet that is less than 16
bytes, we need to pad it and apply our block cipher.
For a message that is larger than 16 bytes, one ap-
proach called ciphertext stealing [31] can be used to
ensure that the ciphertext has the same length as the
underlying plaintext. Encrypting data payloads of less
than 16 bytes will produce a ciphertext of 16 bytes
because ciphertext stealing requires at least one block
of ciphertext [31]. Similar approaches have also been
used in [19]. Note that it is not desirable to send short
messages considering the fixed overhead of sending
a message (turning on the radio, acquiring the chan-
nel, and sending the start symbol) [19]. Also, for data
packets that are larger than 16 bytes, we need more
than one block cipher to encrypt the whole message.
The same X1 (X1 used for the first block cipher) is
used for the rest of the block ciphers in order to avoid

the expensive operations of multiplication and mod-
ulo.

5. Performance Analysis

The amount of computational energy consumed by
a security function on a given microprocessor is pri-
marily determined by the power consumption of the
processor, the clock frequency of the processor, and
the number of clocks needed by the processor to com-
pute the security function. We assume that energy
consumption cannot be significantly reduced via a re-
duction in clock frequency. The cryptographic algo-
rithm and the efficiency of the software implemen-
tation determine the number of clocks necessary to
perform the security function [34]. Therefore, the
processing overhead in terms of the Number of Ba-
sic Operations can reflect the implementation effi-
ciency and the energy consumption of the crypto-
graphic computation.

Thus, we calculate the Number of Basic Opera-
tions of our cipher and compare it with RC5, which
is one of the most popular and efficient block ciphers
that is widely used in wireless sensor networks. We
consider Addition, XOR, Shift (1 bit), Fetch (fetch a
value from the main memory to a register), and Store
(store a value in a register to the main memory) as
our basic operations. In particular, we choose RC5-
32/12/X, (i.e., 32 bits words, 12 rounds, and X as the
key length) based on the algorithm in [21]. The key-
expansion routine is the most time-consuming part in
running the RC5 algorithm. Because most wireless
sensor networks that adopt RC5 as their underlying
cipher require the S-Table to be computed in advance
to speedup their sensor’s operation, we do not con-
sider the cost of computing the S-Table in our analy-
sis.

To make our comparison plausible, we consider the
cost of performing one general n-bits multiplication
as n

2 additions and n
2 shifts in average on n-bit reg-

isters. Since a division can be reduced to a multi-
plication, we use the same estimation for the division.
Also, the same estimation is made to the general mod-
ulo.

We have some special cases: a multiplication by 2
is a left-shift operation; the operation of (n mod 32)
is considered one XOR operation (in fact, we need
a bitwise AND). In Rivest’s algorithm, “shift B bits
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(≪ B)” means “shift (B mod 32) bits”. Thus, there
is a bitwise AND involved. Also, we use 16 as the av-
erage value of (B mod 32). For RC5, we assume that
the values of A and B, the two words to be encrypted,
remain in the registers during the course of computa-
tion. Finally, we consider that n basic operations on a
32-bit-processor are equivalent to 8n basic operations
on a 8-bit processor. This is because each operation
will be broken into 4 operations plus 4 store opera-
tions. This may be oversimplified since some neces-
sary bookkeeping such as handling the carry bits may
be required, but we ignore them for simplicity.

We restrict the multiplier a and modulus m to

263 < a < 264 and 2127 < m < 2128.

Therefore, the modulus operation can be reduced
to basic operations as follows:

Let a63 · · ·ai · · · a2a1a0 be the bit string represent-
ing a. Equation (1) is equal to the following:

aXn + b mod m = (aXn mod m) + b mod m.

Because

(2i+1Xn mod m) = ((2Xn mod m)× 2i) mod m),

and

aXn mod m

= (a63 · 263 ·Xn + · · ·+ ai · 2i ·Xn + · · ·+
a0 · 20 ·Xn) mod m

the value of (aXn mod m) can be computed
by the following algorithm using the following basic
operation shifts, additions, and subtractions:

1:input Xn, a, b, m;

2: Xn+1 ← 0;

3: for (i = 0 to 63)

4: if (ai = 1)

5: Xn+1 ← mod(Xn+1 + Xn, m);
6: Xn ← mod(2Xn, m);
7: end for;

8: Xn+1 ← mod(Xn+1 + b, m);
9:output Xn+1;

Note that 2Xn needs a shift-left operation. More-
over, since we choose 2127 < m < 2128, it follows
that both Xn+1+Xn and 2Xn are less than 2m. Thus,
each of the two modulus operations can be done by
one subtraction.

We assume that Xn and Xn+1 remain in the regis-
ters, and in average a half of the bits in a has value 1.
The average number of basic operations performed by
the algorithm above approximates to 197 according to
the following analysis.

• Line 5: performed 32 times, each time includes
one addition and one subtraction.

• Line 6: performed 64 times, each time includes
one shift and one subtraction.

• Line 8: performed once, with one addition and
one substraction involved.

• In addition, we need to fetch four parameters
(Xn, a, b and m) and store one number (Xn+1).

5.1. Results
5.1.1. Our Cipher

The message encryption of our mechanism in-
volves two parts: the block cipher (Step 2, 3, and 4)
and the generation of the random number X 1 (Step
1). We analyze their number of basic operations re-
spectively.

The breakdown of the number of the block cipher’s
basic operations is illustrated in Table 2. Our block
cipher involves one 128-bits XOR, a Z16 to Z16 per-
mutation construction, and its application to 16 bytes.
In our experiments, we need less than 30 8-bit com-
parisons and 30 8-bit additions (the addition is just
for a while loop index) to construct the permutation
in average. We consider an 8-bit comparison as an
8-bit XOR. Of course, we need 16 8-bits fetches and
16 8-bits stores for applying the permutation. Note
that, all operations involved in the permutation part
are byte-oriented. Thus, no overhead will increase if
we implement the algorithm in an 8-bit processor.

In Table 2, the first column is the name of the basic
operations. The second column is the number of basic
operations needed for a 16 bytes block on a 128-bit
processor. This is the ideal case for our block cipher
because the size of our block cipher is 16 bytes and
the maximum size of the LCG parameters (a, b, m,
and Xi) is 128 bits. Because of the popularity of 8-
bit Atmega in Berkeley Motes, we also calculate the
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number of basic operations for a 16 bytes block on an
8-bit processor, as illustrated in the third column. The
number of basic operations for a 16 byte packet and
a 32 byte packet are illustrated in the fourth and fifth
column, respectively. Please note that the number of
operations presented in Fig. 2 does not include the
operations to generate random numbers.

The breakdown of the number of basic operations
of the random number generation is illustrated in Ta-
ble 3. In our algorithm, one 16 byte LCG random
number is needed for each packet to be transmitted.
This should be considered as the counterpart of the
key expansion stage in RC5. Although a LCG is
very efficient compared to the key expansion routing
in RC5, we should take its computing cost into ac-
count because we ask each sensor node to compute
these keys dynamically for each packet (not for each
block). It is clear that the most costly operations in the
LCG algorithm are the general 128-bit multiplication
and 128-bit modulo. Each, as we discussed earlier,
is equivalent to 64 128-bit additions and 64 128-bit
shifts in average. To generate a LCG random number,
we need four fetches, one store, one multiplication,
one addition, one modulo, and each performs on 128-
bit data.

In Table 3, the first column illustrates the basic
LCG operations involved in the random number gen-
eration. The second column illustrates the number of
corresponding LCG operations. The fourth column
lists the corresponding number of the basic operations
for a 16 byte block on a 128-bit processor. The fifth
column lists the corresponding number of the basic
operations for a 16 byte block on an 8-bit processor.

5.1.2. RC5
The breakdown of the number of RC5’s basic oper-

ations is illustrated in Table 4. Here we do not count
the computation overhead of the S-Table’s precompu-
tation. Table 4 follows the same format as illustrated
in Table 2. As we can see, for RC5, we need less than
17K basic operations to encrypt a 32-byte packet on
an 8-bit processor.

5.2. Put Them All Together
Table 2, 3, and 4 illustrate the breakdown of using

our proposed block cipher and RC5 as the building
block to encrypt a packet. Combine these three tables
together, we obtain Table 5, which depicts the com-

parison of the number of basic operations to encrypt
a packet at different sizes.

Table 5 clearly demonstrates the advantage of our
proposed cipher. Considering an 8-bit processor,
for a 16 byte packet, our encryption mechanism
needs roughly 3/4 amount of basic operations of
RC5. What’s more, our encryption mechanism takes
into consideration the generation of random numbers,
which may provide many advantages. For a 32 byte
packet, the number of basic operations of RC5 is dou-
bles that of 16 byte packets. However, for a 32 byte
packet, our encryption mechanism only slightly in-
creases the number of operations. This is because
the second 16 bytes do not need the generation of the
random number, which significantly reduces the over-
head. Similar observations exist for 64 byte and larger
packets.

6. Conclusions and Future Work

6.1. Conclusions
In this paper, based on a Linear Congruential Gen-

erator, we propose a lightweight block cipher and ap-
ply it to wireless sensor networks. The security of our
proposed cipher is achieved by adding random noise
and random permutations to the original data mes-
sages. We analyze the security performance of our
proposed cipher. Based on it, we present a secure pro-
tocol for WSNs. Security analysis demonstrates that
our proposed cipher is secure and suitable for wire-
less sensor networks. At the same time, our proposed
cipher is much more efficient in terms of the number
of basic operations.

6.2. Future Work
We plan to implement our proposed mechanisms

on MICA2 sensor nodes and compare the perfor-
mance of our block cipher with other popular light-
weight ciphers.

We also plan to integrate our proposed protocol
with other existing WSN applications. Some emerg-
ing new classes of applications (for example, repro-
gramming or “re-tasking” of groups of sensors) re-
quire reliable data delivery. The data that flows from
sinks to sources for the purpose of control or man-
agement is sensitive to message loss. In this situation,
existent reliable transport protocols for WSNs (for ex-
ample, Pump Slowly Fetch Quickly (PSFQ) [37]) can
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Table 2
Numbers of Basic Operations in LCG-based Cipher

128-bit Processor 8-bit Processor 8-bit Processor 8-bit Processor

Operation 16 byte Block 16 byte Block 16 byte Packet 32 byte Packet

Addition 0 0 0 0

XOR 31 62 62 124

Shift 0 0 0 0

Fetch 31 62 62 124

Store 31 62 62 124

Total 93 186 186 372

Table 3
Numbers of Basic Operations for Generating One 128-bits LCG Pseudo-Random Number

LCG Number of Equivalent 128-bits processor 8-bit processor

Operations LCG Operations Operations 16 byte block 16 byte block

128-bit Addition 1 Addition 129 4128

128-bit Shift 0 Shift 64 2048

128-bit Fetch 4 Fetch 4 128

128-bit Store 1 Store 1 32

128-bit Multiplication 1

128-bit Moduli 1

Total 8 197 6304

be used together with our rekeying mechanism to en-
hance the security. That is, PSFQ could help our se-
cure protocols to dynamically adjust the correct key
for the current data transmission.

When there is no existence of a reliable transport
protocol, we can adaptively adjust the mechanism of
our proposed scheme according to existing services.
In different environments of WSNs, the communica-
tion quality can vary dramatically over time. Gener-
ally, many of the links are lossy. The loss rate may
change dynamically with environmental factors (the
network topology, the physical layer coding scheme,
the network topology, etc.) [35] or due to the con-
tention arising from the highly correlated behavior of
the application. Error rates experiencedby these wire-
less networks can vary widely. In this kind of situa-
tion, existing work on the wireless link evaluation can
not only help data delivery services select a more re-
liable path, but also help in our rekeying mechanism -
reducing the possible synchronization operations for

rekeying. Blacklisting and routing using a metric that
reflects path reliability can also help eliminate unreli-
able, lossy, or asymmetric links from the set of links
used for communications [36]. All these techniques
could also provide help to the rekeying mechanism.

We expect our proposed secure protocols to have
a close relationship with different environments and
different applications in order to achieve the maxi-
mum security. This is necessary given the application
specific nature of wireless sensor networks.
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